Introduction

I proposed several materials for Clinical Mathematics Education in [1] such as dynamical graphs (representing cause and effect), strategy games (equivalence relations generated by simple basic relations), and various inverse problems in arithmetics (techniques, skills, arts and structures in the world of numbers). I also developed in [2] the theory of dynamical graphs in the case of reduced divisor sums.

In this note, I will give a brief review of a theory of dynamical graphs (see [4] for details), and a detailed account in the case of Reversed Difference as an example.

§1. A Review of Dynamical Graphs

An oriented graph $G = (V, E)$ is called dynamical (or simply a dynagraph), if the set of vertices $V = \{v\}$ is an at most countable (i.e. finite or countable) set, and the outgoing degree of every vertex is 1 (constant). The set of (oriented) edges $E \subset V \times V$ satisfies the following condition:

For any $v \in V$, there exists one and only one vertex $w \in V$ with $e = (v, w) \in E$.

An element v of V is called a vertex, and $e = (v, w)$ of E is called an (oriented) edge or arrow, where v is called a source and w is called a target of the arrow e.

*Fac. of Education, Mie University
In a word, a dynamical graph is nothing but an at most countable oriented graph whose any vertex v has only one outgoing arrow from v.

Proposition 1 The set $\mathcal{D}(V)$ of dynamical graphs on V is bijective to the set $\text{Map}(V,V)$ of the maps of V to itself. The correspondence is given as follows.

Given $f \in \text{Map}(V,V)$, take the set $E = \{(v, f(v)) \mid v \in V\}$ of pairs as the graph of f, then $G(f) = (V,E(f))$ is a dynamical graph.

Conversely, given a dynamical graph $G = (V, E)$, for any $v \in V$ we have only one vertex $w \in V$ with $(v, w) \in E$. So let $f(v) = w$. Denoting f by $f(G)$, we get that $G = G(f(G))$ and $f = f(G(f))$.

The mapping $f : V \to V$ gives a dynamical system on the discrete space V with discrete times:

$$\bar{f} : V \times \mathbb{N} \to V, \quad (v, n) \mapsto f^n(v),$$

where \mathbb{N} denotes the set of all natural numbers.

Two mappings $f, g : V \to V$ are called isomorphic, if there exists a bijection $\varphi : V \to V$ (called an isomorphism) satisfying the equality

$$\varphi(f^n(v)) = g^n(\varphi(v)), \quad (\forall v \in V, n \in \mathbb{N}),$$

that is, the following diagram commutes:

$$\begin{array}{ccc}
V \times \mathbb{N} & \xrightarrow{\bar{f}} & V \\
\varphi \times \text{id} \downarrow & & \downarrow \varphi \\
V \times \mathbb{N} & \xrightarrow{\bar{g}} & V
\end{array}$$

This condition is equivalent with the single equality

$$\varphi \circ f = g \circ \varphi.$$

Isomorphic mappings are denoted by $f \cong g$, and the dynamical graphs $G(f)$ and $G(g)$ corresponding to isomorphic mappings $f, g : V \to V$ are called isomorphic and denoted by $G(f) \cong G(g)$.

Remark 1. The notion of equivalences of dynamical graphs can be weakened as an isomorphism of unoriented graphs, and be strengthened so that φ is an
isomorphism only if \(\varphi \circ f = f \circ \varphi \). We call the former a \textit{weak} isomorphism, and the latter an \textit{automorphism}.

Remark 2. An at most countable (unoriented) graph \(G = (V, E) \) is called \textit{dynamicalizable}, if there exists a suitable assignment of the directions of edges which makes \(G \) dynamical. The resulting dynamical graph \(\bar{G} = (V, \bar{E}) \) is called a \textit{dynamicalization} of the graph \(G \). Note that dynamicalizations are, in general, not unique.

The degree of a vertex of a graph is usually defined as a number of connecting edges to this vertex. In the case of dynamical graphs, there exists only one outgoing edge for every vertex \(v \), so we will define it the number of incoming edges of the vertex \(v \), or of arrows with \(v \) as a target, \(\text{i.e.} \ \deg(v) = |\{w \in V \mid (w, v) \in E\}| \). Note, for each vertex \(v \in V \), its degree as of a dynamical graph \(G \) is larger by 1 than the degree as the dynamicalization \(\bar{G} \) of \(G \), \(\text{i.e.} \ \deg_G(v) = \deg_{\bar{G}}(v) + 1 \).

Now, we give a few definitions about dynamical graphs. Let \(G = (V, E) \) and \(G' = (V', E') \) be dynamical graphs. \(G' \) is called a \textit{dynamical subgraph} (or simply \textit{subgraph}) of \(G \), if \(V' \subset V \) and \(E' \subset E \).

As in Proposition 1, the set of dynamical subgraphs of \(G = (V, E) \) is bijective to the set of invariant subsets of \(V \) under the mapping \(f = f(G) \). For an \(f \)-invariant subset \(W \subset V \), the dynamical graph \((W, E(f|W)) \) is a subgraph of \(G \), and vice versa.

For a vertex \(v \in V \), the set
\[
V^+(v) = \{w \in V \mid w = f^a(v) \text{ for some } a \geq 0\}
\]
is called the \textit{future} of \(v \). For a subset \(U \subset V \), \(V^+(U) = \cup_{v \in U} V^+(v) \) is called the future of \(U \).

For a vertex \(v \in V \), the set
\[
V^-(v) = \{w \in V \mid v = f^a(w) \text{ for some } a \geq 0\}
\]
is called the \textit{past} of \(v \). For a subset \(U \subset V \), \(V^-(U) = \cup_{v \in U} V^-(v) \) is called the past of \(U \).

A vertex \(v \in V \) has a \textit{life} \(n \) (and denoted by \(\ell(v) = n \)), if there exists a natural number \(n \) such that \(v \in f^a(V) \) \((0 \leq a \leq n - 1)\) and \(v \notin f^n(V) \). If such number \(n \)
does not exist, then such vertex has an infinite life. The set $L_{\infty}(G)$ of all vertices with an infinite life can be written as

$$L_{\infty}(G) = \bigcap_{0 \leq a < \infty} f^a(V).$$

In general, we get $f(V) \subset V$, hence we get a sequence of the vertex sets of dynamical subgraphs:

$$V \supset f(V) \supset f^2(V) \supset f^3(V) \supset \cdots \supset L_{\infty}(G).$$

The set $L_n(G)$ of all vertices of life n coincides with the difference $f^{n-1}(V) \setminus f^n(V)$. For example,

$$L_1(G) = \{v \in V \mid \deg(v) = 0\}.$$

In particular, if G is a union of cycles (defined below), then $G = L_{\infty}(G)$.

Remark 3. The life of vertices measures a degree of shrinking of the world at each vertex in the course of time.

For a subset $U \subset V$, the minimal subgraph $(V^+(U), E')$ is called *generated by* U, if $u, v \in V^+(U)$ and $(u, v) \in E$ imply $(u, v) \in E'$. This will be denoted by $\langle U \rangle$. Note that $\langle U \rangle$ is nothing but the dynamical subgraph whose vertex set coincides with the future $V^+(U)$ of U, and of course, $G = \langle V \rangle$.

For a vertex v, the subgraph $\langle \{v\} \rangle$ is also simply denoted by $\langle v \rangle$, and then $\langle v \rangle$ is connected.

§1.1 Regular Dynamical Graphs

Similarly as in the ordinary graph theory, we can define paths, cycles, periods of cycles, connectivity, etc. For example, a subset $C = \{v_1, \cdots, v_p\}$ of (mutually different) vertices is called a *cycle*, if it satisfies

$$f(v_i) = \begin{cases} v_{i+1} & (i < p) \\ v_1 & (i = p). \end{cases}$$

And the number $p = p(C)$ is called the *period* of the cycle C. A cycle with a period 1 consists of a single vertex, and is also called a *fixed point*. The subgraph $\langle C \rangle$ generated by C is also called a cycle.
In dynamical graphs, there exist no paths connecting two cycles, and any connected component (i.e., maximal connected subgraph) contains at most one cycle. We call the cycle C a limit cycle, if its connected component has a vertex point other than C, or equivalently if the past of C is actually larger than C.

A dynamical graph $G = (V, E)$ is called connected, if $V^+(v) \cap V^+(w) \neq \emptyset$ for any vertices $v, w \in V$. Maximal connected dynamical subgraphs are called connected components (or simply components), and if a set U of vertices is contained in a component G' of G, then G' is called the component of U and is denoted by G_U.

A connected component G' of a dynamical graph G is called regular, if it contains actually one cycle C. Then we say that any subsets or vertices of G' belong to the cycle C or the C-family.

A dynamical graph G is called regular, if every component of G is regular. Then we get easily the following.

Proposition 2 (i) Any finite dynamical graph is regular.

In the following, assume that G is regular.

(ii) Any vertex v of infinite life belongs to a cycle. Hence the set $L_\infty(G)$ is a (disjoint) union of cycles.

(iii) If the degree of every vertex is 1, then G itself is a union of cycles.

Proof. Since $|V| < \infty$, there is a finite maximum life $k = \max_{v \in V} \ell(v)$. Then we get

$$f^a(V) = \bigcap_{0 \leq a < k} f^a(V) = f^k(V).$$

Any vertex $v \in f^k(V)$ is of life ∞, so $v \in f^a(V)$ for any $a \in \mathbb{N}$. Since $|V| < \infty$, there is a vertex w such that $v = f^{a_1}(w) = f^{a_2}(w)$ for some $a_1 < a_2$. We may assume that $v \neq f^a(w)$ for $a_1 < a < a_2$. Then by putting $b = a_2 - a_1$, we get

$$f^b(v) = f^{b+a_1}(w) = f^{a_2}(w) = v,$$

hence v generates a cycle C with a period b. \qed

Now we define the notion of the height of vertices in regular components. Let v be a vertex belonging to a cycle C. Define the height $ht(v) = ht_C(v)$ as

$$ht(v) = \begin{cases} 0 & (v \in C) \\ n & (f^n(v) \in C, f^m(v) \notin C \text{ for any } 0 \leq m < n). \end{cases}$$
Let $G' = (V', E')$ be a regular component of a dynamical graph G, with the cycle C. Let $\mathcal{F}_k(C)$ be the set of all vertices belonging to V' of height k, i.e. $\mathcal{F}_k(C) = \mathcal{F}_{k}(C; G) = \{v \in V'(or V) \mid \text{ht}_C(v) = k\}$.

Then $\mathcal{F}(C) = \bigcup_{k \geq 0} \mathcal{F}_k(C)$ is a disjoint union, nothing but G', and symbolically G' is drawn as

$$C = \mathcal{F}_0(C) \leftarrow \mathcal{F}_1(C) \leftarrow \cdots \leftarrow \mathcal{F}_k(C) \leftarrow \mathcal{F}_{k+1}(C) \leftarrow \cdots$$

Now we give an invariant for dynamical graphs. Let $G = (V, E)$ be a dynamical graph, then define the degree characteristic of G as the vector $D_G = (D_G(0), D_G(1), D_G(2), D_G(3), \cdots)$, where $D_G(i)(= D(i)) = |\{v \in V \mid \text{deg}(v) = i\}|$ is the number of vertices of degree i. We can write it also as a sum $D_G = \sum_{i \geq 0} D_G(i)k_i$, where k_i is the vector with 1 in the i-th component and 0 in all other components.

If there is a number i such that $D_G(j) = 0$ for any $j > i$, then we write it briefly as $D_G = (D_G(0), D_G(1), \cdots, D_G(i-1), D_G(i))$.

In the case of finite graphs G, we get

$$\sum_{i \geq 0} D_G(i) = |V| \quad \text{and} \quad \sum_{i \geq 0} iD_G(i) = |V|,$$

where the latter equality is well known as $\sum_{i \geq 0} iD_G(i) = |E|$ in graph theory, but $|E| = |V|$ for finite dynamical graphs.

We have many examples even in the case where $V \subset \mathbb{N}$, which will be assumed in the rest of this article. In this case, we say G is a dynamical graph of numbers. In the next subsection, we will give a few examples illustrating the notions defined above.
§1.2 Some Examples of Dynamical Graphs of Numbers

Examples will be given as pairs of a set V of vertices and a map f on V.

Example 1 (Addition Graph). At first, we give the most trivial example.

Let $V = \mathbb{N}$. And for any $a \in \mathbb{N}$, let $f(x) = x + a$ ($x \in V$) and denote the corresponding dynamical graph by $A^a = G(f)$. The dynamical graph A^1 is drawn as follows.

$$A^1: 0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow n + 1 \rightarrow \cdots.$$

Hence, for $n \geq 1$,

$$L_n(A^1) = \{n - 1\}, \quad L_\infty(A^1) = \emptyset \quad \text{and} \quad D_{A^1} = (1, \infty) = k_0 + \infty k_1.$$

The graph A^1 is connected and not regular.

For $a > 1$, the graph A^a is no longer connected, and the number of connected components is a and any components are not regular. For $a = 2$, the graph A^2 is drawn as follows.

$$0 \rightarrow 2 \rightarrow 4 \rightarrow \cdots \rightarrow 2n \rightarrow 2n + 2 \rightarrow \cdots$$

and for $n \geq 1$,

$$L_n(A^a) = \{i \mid (n - 1)a \leq i < na\}, \quad L_\infty(A^a) = \emptyset \quad \text{and} \quad D_{A^a} = (a, \infty).$$

Let k be a positive integer, and consider the above graphs modulo k. That is, let $V = I_k = \{i \in \mathbb{N} \mid 0 \leq i < k\}$ and $f(x) \equiv x + a \mod k$ for $x \in I_k$. The corresponding dynamical graph $G(f)$ is regular and denoted by A^a_k.

If k and a are mutually prime (i.e. $(k, a) = 1$), then A^a_k itself is a cycle and for $n > 0$

$$L_n(A^a_k) = \emptyset, \quad L_\infty(A^a_k) = I_k \quad \text{and} \quad D_{A^a_k} = (0, k) = k k_1.$$

For example, A^3_{10} is drawn as follows.

$$\begin{array}{c}
0 \rightarrow 3 \rightarrow 6 \rightarrow 9 \rightarrow 2 \\
\uparrow \quad \uparrow \quad \uparrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
7 \quad 4 \quad 1 \quad 8 \quad 5
\end{array}$$

If k and a are not mutually prime (i.e. $(k, a) = d > 1$), then the graph A^a_k has d connected components which are cycles C_i ($1 \leq i \leq d$). For $n > 0$

$$L_n(A^a_k) = \emptyset, \quad L_\infty(A^a_k) = I_k, \quad \mathcal{F}(C_i) = C_i \quad \text{and} \quad D_{A^a_k} = (0, k) = k k_1.$$

7
For example, A_{10}^4 and A_{10}^5 are drawn as follows.

$$A_{10}^4: \begin{array}{c}
0 \rightarrow 4 \rightarrow 8 \\
6 \rightarrow 2 \\
1 \rightarrow 5 \rightarrow 9 \\
7 \rightarrow 3 \\
\end{array}$$

$$A_{10}^5: \begin{array}{c}
5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \\
0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \\
\end{array}$$

Example 2 (Multiplication Graph).

Let $V = \mathbb{N}$. And for any $a \in \mathbb{N}$, let $f(x) = ax \ (x \in V)$ and denote the corresponding dynamical graph by $M^a = G(f)$.

The dynamical graph M^1 is isomorphic with A^0, and its every vertex is a fixed point (cycle with period 1). Hence for $n > 0$

$$\mathcal{L}_n(M^1) = \emptyset, \quad \mathcal{L}_\infty(M^1) = \mathbb{N}, \quad \mathcal{F}(\{n\}) = \{n\} \text{ and } \mathcal{D}_{M^1} = (0, \infty).$$

For $a > 1$, the dynamical graph M^a has one cycle (fixed point) and infinite components, each of which is isomorphic with A^1 and so not regular. We get

$$\mathcal{L}_n(M^a) = \{N \in \mathbb{N} \mid a^m|N \ (m < n), \ a^n \not| N\},$$

$$\mathcal{L}_\infty(M^a) = \{0\}, \quad \mathcal{F}(\{0\}) = \{0\} \text{ and } \mathcal{D}_{M^a} = (\infty, \infty) = \infty \mathbb{N}_0 + \infty \mathbb{N}_1.$$

In particular, $\mathcal{L}_1(M^2)$ consists of all odd integer > 0, and M^2 is drawn as follows.

$$0 \rightarrow 1 \rightarrow 2 \rightarrow 4 \rightarrow 8 \rightarrow 16 \rightarrow 32 \rightarrow 64 \rightarrow 128 \rightarrow \cdots$$

$$3 \rightarrow 6 \rightarrow 12 \rightarrow 24 \rightarrow 48 \rightarrow 96 \rightarrow 192 \rightarrow \cdots$$

$$m = 2n + 1 \rightarrow 2m \rightarrow 4m \rightarrow 8m \rightarrow 16m \rightarrow 32m \rightarrow \cdots$$

In particular, $\mathcal{L}_1(M^2)$ consists of all odd integer > 0, and M^2 is drawn as follows.

Let k be a positive integer, and consider the above graphs modulo k. That is, let $V = I_k = \{i \in \mathbb{N} \mid 0 \leq i < k\}$ and $f(x) \equiv ax \ (\text{mod } k)$ for $x \in I_k$. The corresponding dynamical graph $G(f)$ is regular and denoted by M_k^a. It always contains the fixed point $\{0\}$.

8
If \(k \) and \(a \) are mutually prime (i.e. \((k, a) = 1\)), then for \(n > 0 \)

\[
\mathcal{L}_n(M_k^a) = \emptyset, \quad \mathcal{L}_\infty(M_k^a) = I_k, \quad \mathcal{F}(M_k^a) = M_k^a, \quad \mathbb{D}_{M_k^a} = (0, k) = kk_1,
\]

and the graph \(M_k^a \) is a sum of cycles.

In the case where \(k \) and \(a \) are not mutually prime, there are various types of graph structures.

For example, the graph \(M_{2k}^2 \) will be a tree, if we omit the arrow from 0. Such dyna-graph will be called a tree-like graph. Rigorously, a dyna-graph \(G \) is called tree-like, if periods of any cycles are 1.

The fixed point \(C = \{0\} \) is a unique cycle in \(M_{2k}^2 \), and for any \(n(0 < n \leq k) \),

\[
\mathcal{L}_n(M_{2k}^2) = \mathcal{F}_{k+1-n}(C) = \{N \in I_{2k} \mid 2^m|N \ (m < n), \ 2^n \not{|N}\},
\]

\[
\mathcal{L}_\infty(M_{2k}^2) = C, \quad \mathcal{F}(C) = M_{2k}^2 \quad \text{and} \quad \mathbb{D}_{M_{2k}^2} = (2^{k-1}, 0, 2^{k-1}) = 2^{k-1}k_0 + 2^{k-1}k_2.
\]

In particular, \(\mathcal{L}_1(M_{2k}^2) \) consists of all odd integer \(> 0 \). For example, \(M_{16}^2 \) is drawn as follows.

![Diagram of \(M_{16}^2 \)](image)

The graph \(M_p^{p^2} \) is also tree-like, and \(\mathcal{L}_\infty(M_p^{p^2}) = \{0\} \), \(\mathcal{L}_2(M_p^{p^2}) = \{ip \mid 1 \leq i < p\} \)

\[
\mathcal{L}_1(M_p^{p^2}) = \{n \in I_p^2 \mid p \not{|n}\}, \quad \text{and} \quad \mathbb{D}_{M_p^{p^2}} = p(p-1)k_0 + pk_p.
\]

For the mixed type such as \(k = 10 = 2 \times 5 \) or \(100 = 2^2 \times 5^2 \), the structures of graphs will be more complicated. \(M_{10}^2 \) has two cycles \(C_0 = \{0\} \) and \(C_1 = \{2, 4, 8, 6\} \), and

\[
\mathcal{F}_1(C_0) = \{5\}, \quad \mathcal{F}_1(C_1) = \{1, 7, 9, 3\}, \quad \mathbb{D}_{M_{10}^2} = (5, 0, 5) = 5k_0 + 5k_2,
\]
\[I_{10} = \mathcal{L}_1(M_{10}^2) \cup \mathcal{L}_\infty(M_{10}^2), \mathcal{L}_1(M_{10}^2) = \{\text{odd numbers}\}, \mathcal{L}_\infty(M_{10}^2) = \{\text{even numbers}\}. \]

The graph \(M_{10}^2 \) is drawn as follows.

The graph \(M_{100}^2 \) has three cycles \(C_0, C_1, C_2 \), where

\[
C_0 = \{0\}, \ C_1 = \{20, 40, 80, 60\},
\]

\[
C_2 = \{n \in I_{100} \mid n \equiv 0 \pmod{4}, n \not\equiv 0 \pmod{5}\},
\]

\[
\mathcal{F}(C_0) = \{n \in I_{100} \mid n \equiv 0 \pmod{25}\},
\]

\[
\mathcal{F}(C_1) = \{n \in I_{100} \mid n \equiv 0 \pmod{5}, n \not\equiv 0 \pmod{25}\},
\]

\[
\mathcal{F}(C_2) = \{n \in I_{100} \mid n \not\equiv 0 \pmod{5}\}, \ D_{M_{100}^2} = (50, 0, 50) = 50k_0 + 50k_2,
\]

\[
I_{100} = \mathcal{L}_1(M_{100}^2) \cup \mathcal{L}_2(M_{100}^2) \cup \mathcal{L}_\infty(M_{100}^2),
\]

\[
\mathcal{L}_1(M_{100}^2) = \{n \not\equiv 0 \pmod{2}\},
\]

\[
\mathcal{L}_2(M_{100}^2) = \{n \equiv 0 \pmod{2}, n \not\equiv 0 \pmod{4}\},
\]

\[
\mathcal{L}_\infty(M_{100}^2) = \{n \equiv 0 \pmod{4}\}.
\]

\(M_{100}^2 \) is drawn as follows.
Example 3 (Polynomial Graph). Let $V = \mathbb{N}$. And for any polynomial $p(x) \in \mathbb{N}[x]$, let $f(x) = p(x)$ ($x \in \mathbb{N}$), and denote the corresponding dynamical graph $G(f)$ by $P(p(x))$.

Then the former examples are particular cases of polynomial graphs: addition graphs $A^a = P(x + a)$ and multiplication graphs $M^a = P(ax)$.

The finite version is similar. Let k be a positive integer. Let $V = I_k$ and $f(x) \equiv p(x) \pmod{k}$ for $x \in I_k$. The corresponding dynamical graph $G(f)$ is regular and denoted by $P_k(p(x))$. Then $A^a_k = P_k(x + a)$ and $M^a_k = P_k(ax)$.

In some sense, this is the most general case:

Proposition 3 Let $G = (V, E)$ be a finite dynamical graph with $n = |V|$, then G is isomorphic with a polynomial graph on I_n.

Proof. Any finite set is bijective with the section $I_n = \{i \mid 0 \leq i < n\}$ of \mathbb{N}. Any function f on I_n can be extended to a polynomial $F(x)$ such that $F(i) = f(i)$, $i \in I_n$ (polynomial interpolation). □

Example 4 (Reduced Divisor Sum Graph). Let $V = \mathbb{N}_{>0}$, and

$$f(i) = \begin{cases} \sum k - i & (i > 1) \\ 1 & (i = 1) \end{cases}$$

The dynamical graph G corresponding to the map f is discussed in [2](see it for drawings of some parts).

Many facts on perfect numbers, abundant numbers, deficient numbers, amicable numbers, prime numbers, etc. can be described in terms of G.

$C_0 = \{1\}$ is a fixed point, and $\mathcal{F}_1(C_0) = \{\text{prime numbers}\}$ by the definition itself of prime numbers. It is easily seen that 2, 5 has a life 1 ($2, 5 \in \mathcal{L}_1(G)$). If we assume that Goldbach’s conjecture for even integers holds, then any odd number > 6 has an infinite life, in particular, any prime number $p(\neq 2, 5)$ belongs to $\mathcal{L}_\infty(G) \cap \mathcal{F}_1(C_0)$.

Other fixed points are perfect numbers such as 6, 28, 496, \cdots (denote the i-th perfect number by p_{fi}, and $C_{p_{fi}} = \{p_{fi}\}$). Amicable numbers such as $C_{am_1} = \{220, 284\}$ make cycles with peiod 2. For example, $C_{pf_1} = \{6\}$, $C_{pf_3} = \{496\}$, C_{am_1} are limit cycles, but $C_{pf_2} = \{28\}$ is not.

As for the futures, for $v < 276$ the subgraph (v) generated by v is finite, and belongs to the cycle C_0 or C_{pf_1} or C_{pf_3} or C_{am_1}. But I can’t determine whether (276)
is regular or not. It seems to me that the graph \(\langle 276 \rangle\) grows unboundedly, so is not regular. For \(v \leq 1000\), there are 12 vertices \(v = 276, 306, 396, 552, 564, 660, 696, 828, 840, 888, 966, 996\) for which \(\langle v \rangle\) may not be regular.

If \(v\) is small, for example, \(v \leq 1000\), most of them (about more than 965) belongs to the cycle \(C_0\). So in [2], we say that for a prime number \(p\), a vertex \(v \in V^-(p)\) belongs to the family \(p\), and we study the structures of the \(C_0\)-component by statistical treatment.

If you want to use the notation of families in this article, you can modify the dynamical graph. Replace \(V\) with \(\{v \in \mathbb{N} \mid v > 1\}\), and change the values of \(f\) for prime numbers \(p\) to \(f(p) = p\). Then \(C_p = \{p\}\) is also a fixed point.

Similarly, we can consider transformations of dynamical graphs, which will be convenient and useful for the study of the relations of dynamical graphs (see [4] for details).

For illustrating the complexity of this dynamical graph, we note several facts.

\[
\mathcal{F}(12161) \cap I_{1000} = \{120, 240, 504\}, \quad \mathcal{F}_{11}(12161) \cap I_{1000} = \{120\},
\]

\[
|\mathcal{F}(321329) \cap I_{1000}| = 8, \quad 318 \in \mathcal{F}_{33}(321329), \quad 330, 498 \in \mathcal{F}_{33}(321329),
\]

\[
|\mathcal{F}(59) \cap I_{100}| = 1, \quad |\mathcal{F}(59) \cap I_{200}| = 5, \quad |\mathcal{F}(59) \cap I_{500}| = 16, \quad |\mathcal{F}(59) \cap I_{1000}| = 45,
\]

\[
138 \in \mathcal{F}_{177}(59), \quad 150 \in \mathcal{F}_{176}(59), \quad 222 \in \mathcal{F}_{175}(59),
\]

\[
168, 234 \in \mathcal{F}_{174}(59), \quad 312 \in \mathcal{F}_{173}(59), \quad 528 \in \mathcal{F}_{172}(59).
\]

138 is the highest vertex of height 177 among vertices of finite height in \(I_{1000}\).

\section*{§2. Reversed Difference}

Let \(Z = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}\) be the set of figures, and \(\mathbb{N}\) be the set of all natural numbers.

For \(k > 0\), consider the set

\[
\mathbb{N}_k = \{n \in \mathbb{N} \mid 0 \leq n < 10^k\} = I_{10^k}
\]

of \(k\)-figures as the set of vertices of our dynamical graph.

Then, by noting the isomorphism

\[
\varphi : Z^k \ni (a_k, a_{k-1}, \ldots, a_1) \mapsto \sum_{i=1}^{k} a_i 10^{i-1} \in \mathbb{N}_k
\]
of Z^k with \mathbb{N}_k, we can define the inversion in \mathbb{N}_k through the order reversion

$$\tilde{\varphi} : Z^k \ni (a_k, a_{k-1}, \cdots, a_1) \mapsto (a_1, a_2, \cdots, a_k) \in Z^k$$

in Z^k, as

$$\tilde{n} = \varphi(\varphi^{-1}(n)) \quad (n \in \mathbb{N}_k).$$

Now we consider the dynamical system on \mathbb{N}_k defined by the map

$$f_k(n) = |n - \tilde{n}| \quad (n \in \mathbb{N}_k).$$

For $k = 4$, this game has been familiar with mathematicians, like as a folklore. Someone called it Kakutani’s game, and someone Kac’s game, since they introduced it to Japanese mathematicians as a kind of recreation mathematics.

Denote by G_k the dynamical graph corresponding to the map f_k. Before dealing with the graph G_4, we study the structure of the graphs G_k for $k = 1, 2, 3$.

§2.1 Case of $k = 1$

In the case of $k = 1$, $V = \mathbb{N}_1$ and the map $f = f_1 : V \to V$ is given as

$$f(d) = |d - d| = 0, \quad \text{hence} \quad C_0 = \{0\} = f(V).$$

C_0 is the unique cycle, and the graph $G_1 = G(f)$ is connected. So they are drawn as follows.

$C_0 : \begin{array}{c}
0 \\
\mathbb{N}_1 = \mathcal{F}(C_0) : \begin{array}{c}
0 \\
1 \\
\vdots \\
9
\end{array}
\end{array}$

$(1 \leq i \leq 9)$

§2.2 Case of $k = 2$

In the case of $k = 2$, $V = \mathbb{N}_2$ and the map $f = f_2 : V \to V$ is given as

$$f(x) = |(10c + d) - (10d + c)| = 9|c - d|, \quad (x = 10c + d \in V).$$

Hence V is decomposed as a sum of invariant subsets:

$$V = \tilde{I}_0 \cup \tilde{I}_1,$$

where

$$\tilde{I}_0 = \{10c + d \mid c = d\} = 11\mathbb{Z} \quad \text{and} \quad \tilde{I}_1 = \{10c + d \mid c \neq d\}.$$
The subgraph \(f(G_2) \) consists of 10 vertices, and is obtained from \(G = G_2 \) by dropping out 90 vertices of life 1.

Denote by \(I_i \) the \(f \)-image \(f(\tilde{I}_i) \) \((i = 0, 1)\), then

\[
\tilde{I}_0 = C_0 = \{0\} \quad \text{and} \quad \tilde{I}_1 = f(\tilde{I}_1) = 9\mathbb{Z} = \{9, 18, 27, 36, 45, 54, 63, 72, 81\},
\]

where \(\mathbb{Z} = \mathbb{Z} \setminus \{0\} = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} \). Since elements \(10c + d \) of \(I_1 \) satisfy \(c + d = 9 \), hence their images are odd. In fact, since \(|c - d| = |c - (9 - c)| = |2c - 9| \) is odd, \(f(10c + d) = 9|c - d| \) is also odd. Let \(C_1 = I_1 \cap \{\text{odd numbers}\} \), then \(C_1 \supset f(I_1) \) but \(C_1 \) proves to be a cycle, hence \(C_1 \) is the image of \(I_1 \):

\[
C_1 = f(I_1) = \{9 \rightarrow 81 \rightarrow 63 \rightarrow 27 \rightarrow 45 \rightarrow (9)\}
\]

The graph \(G \) has two cycles \(C_0 \) and \(C_1 \) drawn as follows.

\[
C_0: \\
\begin{array}{c}
0 \\
\end{array} \quad C_1: \\
\begin{array}{c}
9 \rightarrow 81 \\
45 \rightarrow 27 \rightarrow 63
\end{array}
\]

and the subgraph \(\langle I_1 \rangle \) generated by \(I_1 \) is \(F(C_1) \cap f(G) \) and is drawn as follows.

\[
\langle I_1 \rangle = \langle I_1(G_2) \rangle : \\
\begin{array}{c}
54 \\
9 \rightarrow 81 \\
45 \rightarrow 27 \rightarrow 63 \\
72
\end{array} \quad 18
\]

§2.3 Case of \(k = 3 \)

In the case of \(k = 3 \), \(V = \mathbb{N}_3 \) and the map \(f = f_3 : V \rightarrow V \) is given as

\[
f(x) = |(100b + 10c + d) - (100d + 10c + b)| = 99|b - d|
\]

for \(x = 100b + 10c + d \in V \). This case is quite similar as the case \(k = 2 \).

\(V \) is decomposed as a sum of invariant subsets:

\[
V = \tilde{I}_0 \cup \tilde{I}_1,
\]

where

\[
\tilde{I}_0 = \{100b + 10c + d \mid b = d\} \quad \text{and} \quad \tilde{I}_1 = \{100b + 10c + d \mid b \neq d\}.
\]
The subgraph $f(G)$ consists of 10 vertices, and is obtained from $G = G_3$ by dropping out 990 vertices of life 1.

Denote by I_i the f-image $f(\tilde{I}_i)$ $(i = 0, 1)$, then

$I_0 = C_0 = \{0\}$ and $I_1 = 99Z^* = \{99, 198, 297, 396, 495, 594, 693, 792, 891\}$.

Since elements $100b + 10c + d$ of I_1 satisfy $b + d = 9$, $c = 9$, hence their images are odd as in the case $k = 2$. Note I_1 is obtained from $I_1(G_2)$ by inserting “9” in the middle of the numbers in $I_1(G_2)$:

$I_1(G_3) = \{100c + 90 + d \mid 10c + d \in I_1(G_2)\}$;

and this procedure is equivariant under f_2 and f_3, that is, if $10a + b \to 10c + d$ in G_2, then $100a + 10z + b \to 100c + 90 + d$ in G_3 for any $z \in Z$.

Let $C_1 = I_1 \cap \{\text{odd numbers}\}$, then $C_1 \supset f(I_1)$ but C_1 proves to be a cycle, hence C_1 is the image of I_1:

$C_1 = f(I_1) = \{99 \to 891 \to 693 \to 297 \to 495 \to (99)\}$

The graph G has two cycles C_0 and C_1 drawn as follows.

$C_0: \begin{array}{c}
0 \\
\end{array}$

$C_1: \begin{array}{c}
99 \rightarrow 891 \rightarrow 693 \\
495 \rightarrow 297 \\
\end{array}$

and the subgraph $\langle I_1 \rangle$ generated by I_1 is $\mathcal{F}(C_1) \cap f(G)$ and is drawn as follows.

$\langle I_1 \rangle: \begin{array}{c}
594 \rightarrow 99 \rightarrow 891 \rightarrow 693 \rightarrow 198 \\
792 \rightarrow 495 \rightarrow 297 \\
\end{array}$

§3. Case of $k = 4$

Now consider the graph $G = G_4$, that is, let $V = \mathbb{N}_4$ and the map $f = f_4 : V \to V$ be given as

\[
 f(10^3a + 10^2b + 10c + d) = |(10^3a + 10^2b + 10c + d) - (10^3d + 10^2c + 10b + a)| = |999(a - d) + 90(b - c)|.
\]
Decompose V in a formal way as

$$V = \tilde{I}_0 \cup \tilde{I}_1 \cup \tilde{I}_2 \cup \tilde{I}_3 \cup \tilde{I}_4,$$

where

$$\tilde{I}_0 = \{10^3a + 10^2b + 10c + d \mid a = d, b = c\},$$
$$\tilde{I}_1 = \{10^3a + 10^2b + 10c + d \mid a = d, b \neq c\},$$
$$\tilde{I}_2 = \{10^3a + 10^2b + 10c + d \mid a \neq d, b = c\},$$
$$\tilde{I}_3 = \{10^3a + 10^2b + 10c + d \mid (a - d)(b - c) > 0\},$$
$$\tilde{I}_4 = \{10^3a + 10^2b + 10c + d \mid (a - d)(b - c) < 0\}.$$

It is easily seen that \tilde{I}_0, \tilde{I}_1 and \tilde{I}_2 are f-invariant, but \tilde{I}_3 and \tilde{I}_4 are not so. But there are invariant subsets \tilde{I}_i^0 of \tilde{I}_i ($i = 3, 4$):

$$\tilde{I}_3^0 = \{x \in \tilde{I}_3 \mid a - d = b - c \neq 0, \pm 5\},$$
$$\tilde{I}_4^0 = \{x \in \tilde{I}_4 \mid a - d = c - b \neq 0\}.$$

Each of these invariant subsets contains a cycle C_i ($0 \leq i \leq 4$), and there are no other cycles:

$$C_0 = \{0\}, \quad C_1: \quad 90 \quad 810 \quad 630 \quad C_3: \quad 6534 \quad 2178$$

$$C_2: \quad 999 \quad 8991 \quad 6993 \quad C_4: \quad 0909 \quad 8181 \quad 6393$$

Denote $f(\tilde{I}_i)$ by I_i and $f(\tilde{I}_i^0)$ by I_i^0, then $I_0 = C_0$,

$$I_1 = 90Z^\times = 10I_1(G_2) \supset C_1,$$
$$I_2 = 999Z^\times = 111I_1(G_2) \supset C_2,$$
$$I_3^0 = 1089(Z^\times \setminus \{5\}) \supset C_3,$$
$$I_4^0 = 909Z^\times = 101I_1(G_2) \supset C_4.$$

Thus the subgraphs $\langle I_1 \rangle, \langle I_2 \rangle, \langle I_4^0 \rangle$ are obtained from the subgraph $\langle I_1(G_2) \rangle$ of G_2, by adding “0” from the left and right sides of, inserting “99” in the middle.
of, and repeating twice the numbers in $I_1(G_2)$ respectively. These procedures are equivariant with f_2 and f_4.

Since there are many vertices of life 1, it is convenient to deal with the image graph $f(G_4)$:

$$V(f(G_4)) = I_0 \cup I_1 \cup I_2 \cup I_3 \cup I_4,$$

whose members sum up to 181, since

$$|I_0| = 1, \quad |I_1| = |I_2| = 9, \quad |I_3| = |I_4| = 9 \times 9 = 81.$$

I_i ($i \leq 2$) are f-invariant, but I_3 and I_4 are not. So let us look at \tilde{I}_3 and \tilde{I}_4 more closely. For $i = 3, 4$, decompose \tilde{I}_i as

$$\tilde{I}_i = \bigcup_{0 \leq j \leq 4} \tilde{I}_{j,i},$$

where

$$\tilde{I}_{j,i} = \{ x \in \tilde{I}_i \mid f(x) \in \tilde{I}_j \}.$$

Let $I_{j,i} = f(\tilde{I}_{j,i}) \subset \tilde{I}_j$, then I_i’s are decomposed as

$$I_3 = \bigcup_{0 \leq j \leq 4} I_{j,3} \quad \text{and} \quad I_4 = \bigcup_{3 \leq j \leq 4} I_{j,4}.$$

Note that f is written as

$$f(x) = \begin{cases} 999|a - d| + 90|b - c| & (x \in \tilde{I}_3) \\ 999|a - d| - 90|b - c| & (x \in \tilde{I}_4) \end{cases}$$

Explicitly, the sets above are expressed as

$$\begin{align*}
\tilde{I}_{0,3} &= \{ x = 10^3a + 10^2b + 10c + d \in \tilde{I}_3 \mid a - d = b - c = \pm 5 \}, \\
\tilde{I}_{1,3} &= \{ x \in \tilde{I}_3 \mid |a - d| = 5, |b - c| \neq 5 \}, \\
\tilde{I}_{2,3} &= \{ x \in \tilde{I}_3 \mid |a - d| \neq 5, |b - c| = 5 \}, \\
\tilde{I}_{3,3} &= \{ x \in \tilde{I}_3 \mid |a - d|, |b - c| \leq 4, \text{ or } |a - d|, |b - c| \geq 6 \} \supset \tilde{I}_{3,0}^0, \\
\tilde{I}_{4,3} &= \{ x \in \tilde{I}_3 \mid |a - d| \leq 4, |b - c| \geq 6, \text{ or } |a - d| \geq 6, |b - c| \leq 4 \}.
\end{align*}$$

$\tilde{I}_{4,3}$ contains the set

$$\tilde{I}_{4,3}^0 = \{ x \in \tilde{I}_3 \mid |a - d| + |b - c| = 10, |a - d|, |b - c| \neq 5 \} = \tilde{I}_3 \cap f^{-1}(I_4^0).$$
The map f is explicitly given as

$$f(x) = \begin{cases} 1089|a - d|, & (x \in I_{0,3} \cup I_{0,3}^0) \\ 4995 + 90|b - c|, & (x \in I_{1,3}) \\ 450 + 999|a - d|, & (x \in I_{2,3}) \\ 900 + 909|a - d|, & (x \in I_{4,3}^0) \end{cases}$$

hence

$$|I_{0,3}| = 1, \quad |I_{1,3}| = |I_{2,3}| = 8, \quad |I_{3,3}| = |I_{4,3}| = 32.$$

More explicitly,

$I_{0,3} = \{5445\}$ belongs to the C_0-family of height 1,

$I_{1,3} = \{5085, 5175, 5265, 5355, 5535, 5625, 5715, 5805\}$ belongs to the C_1-family of height 2,

$I_{2,3} = \{1449, 2448, 3447, 4446, 6444, 7443, 8442, 9441\}$ belongs to the C_2-family of height 2,

$I_{3,3} = I_0^0 \cup I_{4,3}^0 \cup \bar{I}_{3,3}, \quad |I_{3,3}| = 32 = 8 + 8 + 16,$

$I_{4,3}^0 = I_3 \cap f^{-1}(I_{4,3}^0) = \{1359, 2268, 3177, 4086, 6804, 7713, 8622, 9531\}$ belongs to the C_4-family of height 3.

$I_{3,3} = I_{3,3} \setminus (I_0^0 \cup I_{4,3}^0),

= \{1179, 1269, 2088, 2358, 3087, 3357, 4176, 4266\}

\cup \{9711, 9621, 8802, 8532, 7803, 7533, 6714, 6624\}$

$I_{4,3} = I_{4,3} \cup \bar{I}_{4,3}, \quad |I_{4,3}| = 32 = 8 + 24,$

$I_{4,3}^0 = (I_{4,3} \cap I_3^0) = \{1809, 2718, 3627, 4536, 6354, 7263, 8172, 9081\}$ belongs to the C_4-family of height 2.

$I_{4,3} = I_{4,3} \setminus I_{4,3}^0

= \{1359, 1629, 1719, 2538, 2628, 2808, 3537, 3717, 3807, 4626, 4716, 4806\}

\cup \{9351, 9261, 9171, 8352, 8262, 8082, 7353, 7173, 7083, 6264, 6174, 6084\}$

The image of I_3^0 is also contained in itself, so will be denoted by I_3^0. Then

$I_3^0 = \{1089, 2178, 3267, 4356, 6534, 7623, 8712, 9801\},

f(I_3^0) = \{2178, 4356, 6534, 8712\}, \quad f^2(I_3^0) = C_3 = \{2178, 6534\}.$

As for $I_4 = I_{3,4} \cup I_{4,4}$, decompose $I_{3,4}$ and $I_{4,4}$ as follows.

$I_{3,4} = I_{0,3,4} \cup I_{4,3,4} \cup \bar{I}_{3,4}, \quad |I_{3,4}| = 2 + 6 + 6 + 26 = 40$

$I_{0,3,4} = I_4 \cap f^{-1}(I_{0,3}) = \{2277, 7722\},

I_{4,3,4} = I_4 \cap f^{-1}(I_3) = \{1188, 3366, 4455, 5544, 6633, 8811\},\quad 19
\[I^0_{4,3,4} = I_4 \cap f^{-1}(I^0_{4,3}) = \{459, 5904, 1368, 3186, 6813, 8631\} \text{ belongs to the } C_4\text{-family of height }3.\]

\[\bar{I}_{3,4} = I_{3,4} \setminus (I_{0,3,4} \cup I^0_{3,4} \cup I^0_{1,3,4}) \]
\[= \{369, 279, 189, 6903, 7902, 8901\} \]
\[\cup \{1458, 1278, 2457, 2367, 2187, 3456, 3276, 4365, 4275, 4685\} \]
\[\cup \{8541, 8721, 7542, 7632, 7812, 6543, 6723, 5634, 5724, 5864\} . \]

\[I_{4,4} = I_0^0 \cup \bar{I}_{4,4}, \quad |I_{4,4}| = 9 + 32 = 41,\]
\[\bar{I}_{4,4} = I_{4,4} \setminus I^0_4 \]
\[= \{819, 729, 639, 549, 1908, 2907, 3906, 4905\} \]
\[\cup \{1728, 1638, 1548, 2817, 2637, 2547, 3816, 3726, 3546, 4815, 4725, 4635\} \]
\[\cup \{8271, 8361, 8451, 7182, 7362, 7452, 6183, 6273, 6453, 5184, 5274, 5364\} . \]
§4. Drawings of the Dynamical Graph G_4

Let $\tilde{F}(C_i)$ and $F(C_i)$ be the set of vertices belonging to the cycle C_i in $V = \mathbb{N}_4$ and $f(V)$ respectively. And let $\tilde{F}_k(C_i)$ and $F_k(C_i)$ be their subsets consisting of vertices of height k, i.e.

$$\mathbb{N}_4 = \bigcup_{0 \leq i \leq 4} \tilde{F}(C_i), \quad F(C_i) = \bigcup_{k=0}^{\infty} F_k(C_i),$$

$$f(\mathbb{N}_4) = \bigcup_{0 \leq i \leq 4} F(C_i), \quad F(C_i) = \bigcup_{k=0}^{\infty} F_k(C_i),$$

$$\tilde{F}_k(C_i) = \{x \in \mathbb{N}_4 \mid f^k(x) \in C_i, \ f^{k-1}(x) \notin C_i\},$$

$$F_k(C_i) = f(\mathbb{N}_4) \cap \tilde{F}_k(C_i) = f(\tilde{F}_{k+1}(C_i)),$$

where the unions on k are actually finite unions.

The graph G_4 exhibits an interesting phenomena: “gate”.

Any vertex $x \in f(\mathbb{N}_4)$ belongs to some $F_k(C_i)$. For a subset X of $F(C_i)$, x is called a gate for X, if X is contained in the past of x. In the case where $X = F_h(C_i)$ with some $h > k$, x is a gate for X, if $f^{h-k}(X) = x$.

So, 5445 is a gate for $F_2(C_0)$, and

$F_0(C_0) = C_0$, $F_1(C_0) = I_{0,3} = \{5445\}$, $F_2(C_0) = I_{0,3,4} = \{2277, 7722\}$.
So,

\[\mathcal{F}_0(C_1) = C_1, \mathcal{F}_1(C_1) = I_1 \setminus C_1, \mathcal{F}_2(C_1) = I_{1,3}. \]

5265 \in I_{1,3} = \mathcal{F}_2(C_1) \text{ is a gate for } \mathcal{F}_k(C_1) \text{ for } k > 3, \text{ and } |\bigcup_{k>2} \mathcal{F}_k(C_1)| = 66 - 17 = 49. The connected component \(\mathcal{F}(C_1) \) of \(C_1 \) has 66 vertices.

23
So,
\[\mathcal{F}_0(C_2) = C_2, \quad \mathcal{F}_1(C_2) = I_2 \setminus C_2, \quad \mathcal{F}_2(C_2) = I_{2,3}. \]

3996 \in \mathcal{F}_1(C_2) is a gate for \(\mathcal{F}_k(C_2) \) for \(k > 2 \), and \(|\bigcup_{k>1} \mathcal{F}_k(C_2)| = 66 - 9 = 57. \)

The connected component \(\mathcal{F}(C_2) \) of \(C_2 \) has 66 vertices.

\[C_3 : \quad \begin{array}{c}
6534 \rightarrow 2178 \\
\langle I^0_3 \rangle \\
9801 \rightarrow 8712 \rightarrow 6534 \rightarrow 2178 \leftarrow 4356 \\
1089 \rightarrow 7623 \\
\end{array} \]

\[\langle I^0_{3,4} \rangle : \quad \begin{array}{c}
4455 \rightarrow 1089 \\
5544 \rightarrow 9801 \\
8712 \rightarrow 6534 \rightarrow 2178 \leftarrow 4356 \\
24 \rightarrow 3267 \rightarrow 6633 \\
\end{array} \]
So,
\[F_0(C_3) = C_3, \quad F_1(C_3) = \{4356, 8712\}, \quad F_2(C_3) = \{1089, 3267, 7623, 9801\}, \]
and
\[F_3(C_3) = I_3^0, \quad F(C_3) = \bigcup_{0 \leq k \leq 3} F_k(C_3). \]

Note
\[I_3^0 = C_3 \cup F_1(C_3) \cup F_2(C_3) \text{ and } |F(C_3)| = 2 + 2 + 4 + 6 = 14. \]
So,
\[F_0(C_4) = C_4, \quad F_1(C_4) = I_4^0 \setminus C_4, \quad F_2(C_4) = I_4^{0,3}, \]
\[|F(C_4)| = 5 + 4 + 8 + 14 = 31. \]

The maximum height in \(f(\mathbb{N}_4) \) is 11, and \(|F_{11}(C_1)| = |F_{11}(C_2)| = 4 \), and the sizes of connected components \(F(C_i) \) of \(f(\mathbb{N}_4) \) are

\[|F(C_0)| = 4, \quad |F(C_1)| = 66, \quad |F(C_2)| = 66, \quad |F(C_3)| = 14, \quad |F(C_4)| = 31, \]

and sum up to \(4 + 66 + 66 + 14 + 31 = 181 = |f(\mathbb{N}_4)| \).

In the above graphs, there are numbers with underlines. The order reversions of those numbers are not in \(f(\mathbb{N}_4) \), so the image graph \(f(\mathbb{N}_4) \) is not invariant under the reversion.
参考文献

Games of Number Structures II (Reversed Difference)
数の構造ゲームII（反転差）

by Yukihiro KANIE